List of symbols#

Table 9 List of symbols#

Symbol

Description

\(\eye\)

imaginary unit

\(\e\)

Euler’s number (\(\approx 2.718\ldots\))

\(\Reals\)

set of real numbers

\(\Integers\)

set of integers

\(\Natural\)

set of natural numbers

\(\Complexes\)

set of complex numbers

\(\SpaceVector\)

vector space

\(\oplus\)

addition in modular arithmetic (\(x \oplus y \equiv x + y \mathrel{\mathrm{mod}} m\) for a modulus \(m \in \IntegersPositive\))

\(\ominus\)

subtraction in modular arithmetic (\(x \ominus y \equiv x - y \mathrel{\mathrm{mod}} m\) for a modulus \(m \in \IntegersPositive\))

\(\otimes\)

tensor product (also known as the Kronecker product in the context of matrices)

\(\SpaceHilbert\)

Hilbert space

\(\langle{}\cdot{},{}\cdot{}\rangle\)

inner product (the Mathematician’s notation)

\(\braket{{}\cdot{}}{{}\cdot{}}\)

inner product (the Physicist’s notation, “bra-ket”)

\(\langle{}\cdot{}\rangle\)

expected value

\(\ell^p\)

space of sequences with converging \(p\)-norm

\(\SpaceLebesgue^p\)

space of functions with converging \(p\)-norm

\(\SpacePure(\SpaceHilbert)\)

set of pure quantum states on \(\SpaceHilbert\)

\(\SpaceMixed(\SpaceHilbert)\)

set of mixed quantum states (normalized, Hermitian, density operators) on \(\SpaceHilbert\)

\(\SpaceLinear(\SpaceHilbert)\)

set of linear operators on \(\SpaceHilbert\)

\(\dim({}\cdot{})\)

dimension

\(\trace[{}\cdot{}]\)

trace

\(\Purity({}\cdot{})\)

purity

\(\TraceDistance({}\cdot{} , {}\cdot{})\)

trace distance

\(\Fidelity({}\cdot{} , {}\cdot{})\)

fidelity

\(\Entropy({}\cdot{})\)

von Neumann entropy

\(\Entropy({}\cdot{} \! \mathrel{\Vert} \! {}\cdot{})\)

relative entropy

\(\MutualInformation({}\cdot{} : {}\cdot{})\)

mutual information

\(\Action[\vec{\Position}(\Time)]\)

classical action over a path \(\vec{\Position}(\Time)\)

\(\Propagator(\vec{\PositionFinal},\TimeFinal;\vec{\PositionInitial},\TimeInitial)\)

(non-relativistic) quantum propagator from \((\TimeInitial,\vec{\PositionInitial})\) to \((\TimeFinal,\vec{\PositionFinal})\)

\(\DifferentialPath\vec{\Position}(\Time)\)

path-integral formulation differential

\(\Time\)

time

\(\vec{\Position}\)

position vector

\(\vec{\Momentum}\)

momentum vector

\(\OperatorHamiltonian\)

Hamiltonian operator

\(\OperatorLagrangian\)

Lagrangian operator

\(\OperatorKinetic\)

kinetic energy operator

\(\OperatorPotential\)

potential energy operator

\(\Mouth^\pm\)

wormhole mouths (\(\MouthFuture=\) future, \(\MouthPast=\) past)

\(\Probability({}\cdot{})\)

probability density of a continuous function

\(\Expected({}\cdot{})\)

expected value

\(\ket{{}\cdot{}}\)

quantum vector state (a “ket”)

\(\bra{{}\cdot{}}\)

quantum covector state (a “bra”)

\(\ket{i}, \ket{j}, \ket{k}, \ket{n}, \ldots\)

number state (e.g., \(\ket{0},\ket{1},\ket{2},\ldots\))

\(\ket{\Bell}\)

maximally entangled state

\(\Identity_{\Dimension}\)

\(\Dimension \times \Dimension\) identity operator, (unnormalized) maximally mixed state

\(\StateCR, \StateCV, \StateProbe, \ldots\)

density operators (lowercase Greek letters)

\(\op{A},\op{B},\op{C},\op{U},\op{Q},\ldots\)

linear operators (uppercase Latin letters)

\(\Rotation(\theta)\)

rotation gate (with angle parameter \(\theta\))

\(\Phase(\omega)\)

phase gate (with phase parameter \(\omega\))

\(\Swap(p)\)

SWAP gate (with power parameter \(p\))

\(\SUM(n)\)

SUM gate (with shift parameter \(n\))

\(\Hadamard\)

Hadamard gate

\(\QFT\)

quantum Fourier transform gate

\(\VacuumSwap\), \(\VacuumIdentity\), \(\VacuumRotation\)

vacuum-adapted (\(\ket{0}\)-inclusive) gate variants

\(\Control^\alpha \Anticontrol^\beta \Unitary^\gamma\)

controlled-anticontrolled-unitary gate (modes: \(\alpha=\) control, \(\beta=\) anticontrol, \(\gamma=\) unitary)

\(\Pauli_\mu\)

Pauli matrices (with identity \(\Pauli_0 = \Identity\))

\(\GellMann_\mu\)

Gell-Mann matrices (with identity \(\GellMann_0 = \Identity\))

\(\MapDCTCsCR_{\Unitary}[{}\cdot{},{}\cdot{}]\)

D-CTCs CR map

\(\MapDCTCsCV_{\Unitary}[{}\cdot{},{}\cdot{}]\)

D-CTCs CV map

\(\MapPCTCsCR_{\Unitary}[{}\cdot{}]\)

P-CTCs CR map

\(\MapPCTCsCV_{\Unitary}[{}\cdot{}]\)

P-CTCs CV map

\(\MapTCTCsCR_{\Unitary}[{}\cdot{}]\)

T-CTCs CR map

\(\MapTCTCsCV_{\Unitary}[{}\cdot{}]\)

T-CTCs CV map

\(\OperatorPCTC\)

P-CTC operator

\(\Decoherence({}\cdot{})\)

decoherence channel

\(\Depolarization({}\cdot{})\)

depolarization channel

\(\Kraus\)

Kraus operator

\(\SetKraus\)

set of Kraus operators

\(p_i\)

probability (density) of a discrete state (labelled with \(i\))

\(\SetProbability\)

Probability distribution (set of probabilities of discrete states)

\(\SetUnitary\)

set of unitary operators

\(\SetObservable\)

POVM (positive operator-valued measure) (set of positive operators)